

# ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415
International Specialists in the Environment

## HEHORANDUH

| DATE:    | JAN. 9, 1989                                                                     |
|----------|----------------------------------------------------------------------------------|
| TO:      | Villiam Hessenger, Chief Pre-Remedial Unit                                       |
| FROM:    | Jerome D. Oskvarek, FIT Office Manager                                           |
| SUBJECT: | Screening Site Inspection Transmittal Memorandum CERCLIS Site Name: Name Cazaran |
|          | City: BROOKPARK                                                                  |
|          | State: OHO                                                                       |
|          | U.S. EPA ID No.: OHD981957913                                                    |
| •        | SSID No.: NONE                                                                   |
|          | TDD No.: F05-8708-023                                                            |
|          | PAN: FOHO7325A                                                                   |

THIS DOCUMENT IS CONFIDENTIAL. Due to the predecisional nature of this memorandum, this memorandum and its attachments are not to be released. The draft final (circle) Screening Site Inspection (SSI) report accompanies this transmittal memorandum and its attachments. Based on the information gathered during the SSI and other available information, the FIT has recalculated the preliminary and projected ERS 1 scores, and determined the ERS 2 factor value for the site. These scores and factor values are presented below.

US EPA RECORDS CENTER REGION 5

### HRS 1 PRELIMINARY AND PROJECTED SCORES

PRELIMINARY HRS SCORE BASED ON THE SCREENING SITE INSPECTION (SSI) (This score is based on information from the screening site inspection.)  $S_{H} = \bigcirc \qquad S_{DC} = \bigcirc$ 

PROJECTED HRS SCORE FOR A LISTING SITE INSPECTION (LSI) (This score is based on the expected acquisition of information from the listing site inspection.)

 $S_{H} = O$   $S_{DC} = O$ 

HRS 1 score worksheets are attached to this memorandum.

#### HRS 2 FACTOR VALUE

| Factor                   | Factor Val    | Lue            | Observed<br>Human Exposure |
|--------------------------|---------------|----------------|----------------------------|
| Vaste Characteristics    | 17            | <br>(100)      | (X)                        |
| Air Pathvay              | 7.8           | (100)<br>(100) |                            |
| Groundwater Pathvay      | 10            | <u>(100)</u>   |                            |
| Surface Water Pathway    | 15            | (100)          |                            |
| On-site Pathway          | 56            | (100)          |                            |
|                          | in the second |                |                            |
| TOTAL HRS 2 FACTOR VALUE | 176           | (500)          |                            |

HRS 2 factor value worksheets are attached to this memorandum.

## IMMEDIATE ACTION

In addition to the HRS related information, we have evaluated this site for the need for immediate removal action as a result of a substantial threat to either human health or the environment. (Select one)

The site <u>does</u> present a threat which requires immediate removal action.

The site <u>does not</u> present a threat which requires immediate removal action.

## RECOMMENDATIONS

Based on the HRS related information and the evaluation of the immediate removal threat, the FIT concludes from its activities the following (select one):

| $\vee$ | •  | mi ma di sancia |
|--------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 1. | The HRS 1 scores are below 25.00; therefore, the site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |    | should be designated as a NFRAP facility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 2. | The HRS 1 scores are equal to or exceed 25.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |    | however, due to extenuating circumstances (i.e.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |    | ongoing clean-up) the site should not be designated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |    | for LSI activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 3. | The HRS 1 scores are equal to or exceed 25.00. As a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |    | result, we recommend that the site be designated as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |    | potential LSI candidate. The FIT anticipates that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |    | following activities would be required during the LSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |    | in order to establish a sufficient data base to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |    | successfully list the facility on the NPL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |    | a. Installation of monitoring wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |    | b. Air sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |    | c. Further sampling of surface water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |    | d. Further waste characterization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |    | e. More extensive sampling of residential wells and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |    | municipal wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |    | f. Collect additional soil samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |    | g. Perform geophysics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |    | h. Conduct area survey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |    | i. Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## COMMENTS

The FIT would like to make the following additional comments concerning the site.

| Non         | C           |                  |
|-------------|-------------|------------------|
|             |             |                  |
|             |             | -                |
|             | <del></del> |                  |
|             |             |                  |
| <del></del> |             |                  |
|             |             |                  |
|             |             |                  |
|             | 7           |                  |
|             |             |                  |
|             | <del></del> |                  |
|             |             |                  |
|             | <u> </u>    | and the state of |
|             |             |                  |
|             | <del></del> | <del></del>      |

0606:4

# SCREENING SITE INSPECTION PRELIMINARY AND PROJECTED HAZARD RANKING SYSTEM REVISED SCORE WORKSHEETS

| Site Name:       | NAIMAN CARAYA                 | (Cerclis Name)    |
|------------------|-------------------------------|-------------------|
|                  |                               | (a.k.a.)          |
| Address:         | 6410 \$6427 EAST              | RAND ROAD         |
| City/County/Stat | e/Zip: Brook Park/Cuya        | HOGA /OHIO/44142  |
| Cerclis ID:      | OHD981957913                  |                   |
| Prepared by:     | DIEK KAISETZ, E&E             | Date: 7/20/38     |
| Reviewed by:     | ,E&E                          | Date:             |
| TDD:             | F05-8708-073                  | PAN: FOH073254    |
|                  |                               |                   |
|                  | the second second second      |                   |
| SCREENING ST     | TE INSPECTION (SSI) PRELIMINA | ARY HRS SCORE     |
| S <sub>M</sub>   | s <sub>FE</sub> O             | Spc=              |
| LISTING SITE IN  | ISPECTION (LSI) PROJECTED H   | RS SCORE          |
| S <sub>M</sub>   | <u> </u>                      | S <sub>DC</sub> * |

# SCREENING SITE INSPECTION (SSI) PRELIMINARY HRS SCORE

(This score is based on information from the SSI.)

|                                                     | s | s² |
|-----------------------------------------------------|---|----|
| Groundwater Route (Sgw=)                            | 0 | 0  |
| Surface Water Route (S <sub>SW</sub> =)             | 0 | 0  |
| Air Route (S <sub>a</sub> =)                        | 0 | 0  |
| $S_{gw}^2 + S_{sw}^2 + S_a^2$                       |   | 0  |
| $\sqrt{S_{gw}^2 + S_{sw}^2 + S_a^2}$                |   | 0  |
| $\sqrt{S_{gW}^2 + S_{sW}^2} + S_a^2 / 1.73 = S_M =$ |   | 0  |

# LISTING SITE INSPECTION (LSI) PROJECTED HRS SCORE

(This score is based on the expected acquisition of information from the LSI.)

|                                                         | s | S <sup>2</sup> |
|---------------------------------------------------------|---|----------------|
| Groundwater Route (Sgw=)                                | 0 | 0              |
| Surface Water Route (S <sub>sw</sub> =)                 | 0 | 0              |
| Air Route (Sa =)                                        | 0 | 0              |
| $S_{gw}^2 + S_{sw}^2 + S_a^2$                           |   | 0              |
| $\sqrt{S_{yw}^2 + S_{yw}^2 + S_a^2}$                    |   | 0              |
| $\sqrt{S_{yw}^2 + S_{sw}^2 + S_{a}^2 / 1.73} = S_{M} =$ |   | 0              |

# **GROUNDWATER ROUTE**

| SCREEN                                  | IING SITE INSPECTION                                   |                 |           |                         |        |
|-----------------------------------------|--------------------------------------------------------|-----------------|-----------|-------------------------|--------|
|                                         | (This score is based on                                |                 | on from t | he SSI.)                |        |
| Rating Factor                           | Assigned Value (Circle One)                            | Multi-<br>plier | Score     | Description             | Ref. # |
| 1 Observed Release                      | 0 45                                                   | x1              | 0         |                         |        |
| If Observed Release If Observed Release | scores 45 proceed to line 4 scores 0 proceed to line 2 |                 |           |                         |        |
| 2 Route Characteristic                  | ×                                                      |                 |           | Aquiler Description:    |        |
|                                         |                                                        |                 |           |                         |        |
| Depth to Aquifer of concern             | 0 1 23                                                 | <b>x</b> 2      | 6         | 2 ft.                   | 1      |
| Net Precipitation                       | 0(1)2 3                                                | x1              | 1         | Precip. 5" NGT<br>Evap. | 2      |
| Permeability of t<br>Unsaturated Zo     | he 0(1)2 3                                             | x1              | 1         | 10 cm/sec               | 1      |
| Physical State                          | 0(1)2 3                                                | <b>x</b> 1      | t         | Sous                    |        |
|                                         | Total Route Characteristic                             | ≈ Score         | 9         |                         |        |
| 3 Containment                           | 0 1 2(3)                                               | х1              | M         | UHUNGO                  |        |
| 4 Waste Characteristic                  | *                                                      |                 |           |                         |        |
| Persistence 0                           |                                                        |                 |           |                         | ,      |
| Toxicity 1 3                            | 0 0 0 6 9 12                                           | ı               |           |                         |        |
| 2 6                                     | 9 12 15<br>12 15 (8)                                   | x 1             | 13        | LAB DATA                | 1      |
| Haz. Waste Quan                         |                                                        | <b>x</b> 1      | l         | UNKNOWY                 |        |
|                                         | Total Waste Characteristic                             | ⇔ S∞re          | 19        |                         |        |
| 5 Targets                               |                                                        |                 |           |                         |        |
| Groundwater Use<br>Distance to          |                                                        | хЗ              | 0         |                         |        |
| Nearest Well                            |                                                        |                 |           |                         |        |
| Population                              | 0 4 6 8 10<br>2 0 8 12 16 20<br>3 0 12 18 24 30        |                 |           |                         |        |
| Served 7                                | 0 16 24 32 35                                          | x 1             | 0         |                         |        |
|                                         | Total Targets Score                                    |                 | 0         |                         |        |
| 6 If line 1 is 45, multi                |                                                        |                 |           |                         |        |
|                                         | y 2 x 3 x 4 x 5                                        |                 |           |                         |        |
| Divide line 6 by                        | 57,330 and multiply by 100                             |                 | Sgw=      | 0                       |        |

# **GROUNDWATER ROUTE**

|                                              | G SITE INSPECTION ( e is based on the expected       | •               |                                       |                      |           |
|----------------------------------------------|------------------------------------------------------|-----------------|---------------------------------------|----------------------|-----------|
| Rating Factor                                | Assigned Value<br>(Circle One)                       | Multi-<br>plier | Score                                 | Description          | Ref. #    |
| 1 Observed Release                           | 0 45                                                 | <b>x</b> 1      | 0                                     |                      |           |
| If Observed Release self Observed Release se | cores 45 proceed to line 4 cores 0 proceed to line 2 |                 | ·                                     |                      |           |
| 2 Route Characteristics                      |                                                      |                 | · · · · · · · · · · · · · · · · · · · | Aquiter Description: |           |
| ·                                            |                                                      |                 |                                       |                      |           |
| Depth to Aquifer of concern                  | 0 1 2 🕄                                              | x2              | 6                                     | 2 11.                | T         |
| Net Precipitation                            | 0 🕖 2 3                                              | x1              |                                       | Precip. 5"NOT Evan.  | 2         |
| Permeability of the<br>Unsaturated Zone      | 0023                                                 | <b>x</b> 1      | (_                                    | 10 cm/sec            |           |
| Physical State                               | 0 672 3                                              | x1              | 1                                     | Soud                 | l         |
|                                              | Total Route Characteristic                           | s Score         | 9                                     |                      |           |
| 3 Conțainment                                | 0 1 2(3)                                             | <b>x</b> 1      | 3                                     | UHLHOD               | 1         |
| 4 Waste Characteristics                      | <del></del>                                          |                 |                                       |                      |           |
| Persistence 0                                | 1 2 3                                                |                 |                                       |                      |           |
| Toxicity 0 0 0 2 6 3 9                       | 0 0 0<br>6 9 12<br>9 12 15<br>12 15 18               | 1               | 10                                    | 1 > 2 > 2            |           |
|                                              |                                                      | ×1              | 18                                    | LAB DATA             |           |
| Haz. Waste Quantit                           | ty 0(1)2345678                                       | x 1             | 1                                     | Unknown              |           |
|                                              | Total Waste Characteristic                           | ≲ S∞re          | 19                                    |                      |           |
| 5 Targets                                    |                                                      |                 |                                       |                      |           |
| Groundwater Use<br>Distance to               | <b>6</b> 71 2 3                                      | <b>x</b> 3      | 0                                     |                      |           |
| Nearest Well                                 | 0 1 2 3 4                                            | •               |                                       |                      |           |
| Population 2                                 | 0 4 6 8 10 0 8 12 16 20                              |                 |                                       |                      |           |
| Served 3                                     | 0 12 18 24 30<br>0 16 24 32 35                       | - 4             |                                       |                      |           |
| 5                                            | 0 20 30 35 40                                        | × 1             | 0                                     |                      | ********* |
|                                              | Total Targets Score                                  |                 | 0                                     |                      |           |
| 6 tf line 1 is 45, multipl                   |                                                      | -,              |                                       |                      |           |
| ff line 1 is 0, multiply                     | 5x 3x (1 x 2                                         |                 | 0                                     |                      |           |
| Divide line 6 by                             | 57,330 and multiply by 100                           |                 | Sgw=                                  | O                    |           |

ď

# SURFACE WATER ROUTE

| SCREENING SITE INSPECTION (SSI) PRELIMINARY HRS SCORE |                                                        |                 |               |                                        |             |
|-------------------------------------------------------|--------------------------------------------------------|-----------------|---------------|----------------------------------------|-------------|
|                                                       | (This score is based on in                             |                 | from the      | SSI.)                                  | <del></del> |
| Rating Factor                                         | Assigned Value<br>(Circle, One)                        | Multi-<br>plier | Score         | Description                            | Ref. #      |
| 1 Observed Release                                    | (T) 45                                                 | x 1             | 0             |                                        |             |
| If Observed Release If Observed Release               | scores 45 proceed to line 4 scores 0 proceed to line 2 |                 |               |                                        |             |
| 2 Route Characteristic                                | s Intervening Terrain                                  |                 |               | Facil & SUPPLUCE                       | HzO         |
|                                                       | 0 0 0 0 3<br>acility 0 1 1 2 3                         | x 1             | 3             | Interv%                                | 1           |
| s                                                     | Slope 0 1 2 2 3<br>0 2 2 3 3<br>0 2 3 3(3)             | •               |               |                                        | *********   |
| 1-yr. 24 hr Rain                                      |                                                        | x 1             | 2             | 7.2 in.                                | 2           |
| Distance to Near<br>Surface Wate                      |                                                        | x 2             | 6             | ADISCOUT TO SW                         | 1           |
| Physical State                                        | 0 (1) 2 3                                              | x1              | 1             | Sould                                  |             |
|                                                       | Total Route Characteristic                             | cs Score        | 12            |                                        |             |
| 3 Containment                                         | <b>1</b> 2 3                                           | x 1             | 0             | CURY CAPPOD                            | (.   :      |
| 4 Waste Characteristic                                | <b>3</b>                                               |                 |               |                                        | **********  |
| Persistence 0                                         |                                                        |                 |               |                                        |             |
| Toxicity 0 0                                          | 0 0 0 0 0 12                                           | ſ               |               |                                        |             |
| 2   6<br>3   9                                        | 9 12 15<br>1 12 15 (B)                                 | x1              | 18            | LAS DATS                               | *           |
| Haz. Waste Quan                                       | ntity 0 002 3 4 5 6 7 8                                | x1              | 1             | UNKHOMH                                |             |
|                                                       | Total Waste Characteristic                             | cs Score        | 19            |                                        |             |
| 5 Targets                                             |                                                        |                 |               |                                        |             |
| Surface Water Use                                     | 1 ~                                                    | <b>x</b> 3      | 0             | RECREATION                             | :           |
| Dist. to Sensitive<br>Environment                     | 0 (0) ≥ 3<br>Distance to Water                         | x2              | 2             |                                        |             |
|                                                       | lotake Downstream                                      | ι               |               |                                        |             |
| Populat                                               | 10 4 6 8 10<br>tion 0 8 12 16 20                       |                 |               |                                        |             |
| Serve                                                 | tion 0 8 12 16 20<br>d 0 12 18 24 30                   | Г               |               |                                        | <b></b>     |
|                                                       | d 0 12 18 24 30<br>0 16 24 32 35<br>0 20 30 35 40      | x 1             | 0             | No INTAKES                             |             |
|                                                       | Total Targets Score                                    |                 | 8             |                                        |             |
| 6 If line 11 is 45, multip                            |                                                        |                 | $\overline{}$ | ////////////////////////////////////// |             |
| If line 1 is 0, multipl                               | y 2 x 3 x 4 x 5                                        |                 |               |                                        |             |
| Divide line 6 by 64,                                  | ,350 and multiply by 100                               | Ssw=            | 0             |                                        |             |

## SURFACE WATER ROUTE

| LISTING .                           | SITE INSPECTION (LS s based on the expected a        | SI) PRO           | JECTED | HRS SCORE       |        |
|-------------------------------------|------------------------------------------------------|-------------------|--------|-----------------|--------|
| Rating Factor                       | Assigned Value (Circle One)                          | Multi-<br>plier   | Score  | Description     | Ref. # |
| 1 Observed Release                  | <b>(5)</b> 45                                        | x 1               | 0      |                 |        |
|                                     | cores 45 proceed to line 4 cores 0 proceed to line 2 | <b>S</b>          |        |                 |        |
| 2 Route Characteristics             | Intervening Terrain                                  |                   |        | Facil % Surface |        |
| 1                                   | 0 0 0 0 3<br>cility 0 1 1 2 3                        | x 1               | 3      | Interv %        | 1      |
| Slo                                 | 0 1 2 2 3<br>0 2 2 3 3<br>0 2 3 3 3                  |                   |        |                 |        |
| 1-yr. 24 hr Rainfa                  | , , –                                                | x 1               | 2      | 7.2 in.         | 2-     |
| Distance to Neares<br>Surface Water | st 0 1 23                                            | x2                | 6      | ADJOCOUT TO SW  | 19     |
| Physical State                      | 0(D2 3                                               | x1                | 1      | Socie           |        |
|                                     | Total Route Characteristic                           | cs Score          | 12     |                 |        |
| 3 Containment                       | <b>1</b> 2 3                                         | <b>x</b> 1        | 0      | CLAY CAPPED     | ]      |
| 4 Waste Characteristics             |                                                      |                   |        |                 |        |
| Persistence 0  Toxicity 1 3         | 1 2 3                                                | _                 |        |                 |        |
| Toxicity 1 3 2 6 3 9                | 6 9 12<br>9 12 15<br>12 15 (18)                      | , x1              | 18     | Los Dans        |        |
| Haz. Waste Quantit                  |                                                      | x1                | 1      | UMENOWA         |        |
|                                     | Total Waste Characteristic                           | cs Score          | 19     |                 |        |
| S Targets                           |                                                      |                   |        |                 |        |
| Surface Water Use                   | <b>Y</b>                                             | <b>x3</b>         | 0      | RECEDENCE       |        |
| Dist. to Sensitive<br>Environment   | 0 (5)2 3<br>Distance to Water                        | x2                | 2      | WOTLENDS        | =      |
|                                     | Intake Downstream 0 0 0 0 0 0 4 6 8 10               |                   |        |                 |        |
| Populatio<br>Served                 | on 0 8 12 16 20<br>0 12 18 24 30                     | •                 |        |                 |        |
| ••••                                | 0 16 24 32 35<br>0 20 30 35 40                       | x 1               | 0      | No lutakes      |        |
|                                     | Total Targets Score                                  |                   | 8      |                 |        |
| If line 1 is 0, multiply            | y 1 x 4 x 5<br>2 x 3 x 4 x 5                         |                   | 0      |                 |        |
| 7 Divide line 6 by 64,3             | 150 and multiply by 100                              | S <sub>sw</sub> = | 0      |                 |        |

# AIR ROUTE

| SCREENING SITE INSPECTION (SSI) PRELIMINARY HRS SCORE (This score is based on information from the SSI.) |                                                                                                             |                 |                  |             |        |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------|-------------|--------|
| Rating Factor                                                                                            | Assigned Value<br>(Circle One)                                                                              | Multi-<br>plier | Score            | Description | Ref. # |
| 1 Observed Release                                                                                       | 0 45                                                                                                        | x1              |                  |             |        |
| If line 1 is 0, the S                                                                                    | a=0. Enter on line 5 proceed to line 2                                                                      |                 |                  |             |        |
| 2 Waste Characteristi                                                                                    |                                                                                                             |                 |                  |             |        |
| Reactivity & Incompatability                                                                             | 0 1 2 3                                                                                                     | x1              |                  |             |        |
| Toxicity                                                                                                 | 0 1 2 3                                                                                                     | x3              |                  |             |        |
| Haz. Waste Quan                                                                                          | tity 0 1 2 3 4 5 6 7 8                                                                                      | x1              |                  |             |        |
| ·                                                                                                        | Total Waste Characterist                                                                                    | tics Score      |                  |             |        |
| 3 Targets Population within 4-mile Radius Distance to Sensit Environment Land Use                        | Dist to Population  0 0 0 0  9 12 15 18  12 15 18 21  15 18 21 24  18 21 24 27  21 24 27 30  1 2 3  0 1 2 3 | x1<br>x2<br>x1  |                  |             |        |
| 4 Multiply 1 x 2 x                                                                                       | Total Targets Score                                                                                         |                 |                  |             |        |
| Divide line 4 by 3                                                                                       | 5,100 and multiply by 100                                                                                   |                 | S <sub>a</sub> = | 0           |        |

THE SITE IS SECURELY COVERED WITH AN INTACT
CLAY CAP.

# AIR ROUTE

|                                                    | SITE INSPECTION ( is based on the expected                                          |                 |                    |             |                                             |  |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------|-----------------|--------------------|-------------|---------------------------------------------|--|--|--|--|--|
| Rating Factor                                      | Assigned Value<br>(Circle One)                                                      | Multi-<br>plier | Score              | Description | Ref. #                                      |  |  |  |  |  |
| 1 Observed Release                                 | 0 45                                                                                | χi              |                    |             |                                             |  |  |  |  |  |
| If line 1 is 0, the Sa=0 If line 1 is 45, then pro | If line 11 is 0, the Sa=0. Enter on line 5 If line 11 is 45, then proceed to line 2 |                 |                    |             |                                             |  |  |  |  |  |
| 2 Waste Characteristics                            |                                                                                     |                 |                    |             | 111411414141<br>1114141414141<br>1114141414 |  |  |  |  |  |
| Reactivity & Incompatability                       | 0 1 2 3                                                                             | x1              |                    |             |                                             |  |  |  |  |  |
| Toxicity                                           | 0 1 2 3                                                                             | x3              |                    |             |                                             |  |  |  |  |  |
| Haz. Waste Quantity                                | 0 1 2 3 4 5 6 7 8                                                                   | <b>x</b> 1      | _                  |             |                                             |  |  |  |  |  |
| [                                                  | Total Waste Characteristic                                                          | ≈ S∞re          |                    |             |                                             |  |  |  |  |  |
| 3 Targets Population within - 4-mile Radius Po     | 18 21 24 27                                                                         | x 1             |                    |             |                                             |  |  |  |  |  |
| Distance to Sensitive<br>Environment               | 21 24 27 30<br>0 1 2 3                                                              | x 2             |                    |             |                                             |  |  |  |  |  |
| Land Use                                           | 0 1 2 3                                                                             | x 1             |                    |             |                                             |  |  |  |  |  |
|                                                    | Total Targets Score                                                                 |                 |                    |             |                                             |  |  |  |  |  |
| Multiply 1 x 2 x 3                                 |                                                                                     |                 |                    |             |                                             |  |  |  |  |  |
| Divide line 4 by 35,10                             | 00 and multiply by 100                                                              |                 | S <sub>a</sub> = ( | )           |                                             |  |  |  |  |  |

THE SITE IS SECURELY COVORED WITH AN INTECT CLAY CAP.

## FIRE AND EXPLOSION

| SCREENING SITE INSPECTION (SSI) PRELIMINARY HRS SCORE (This score is based on information from the SSL) |                                                                |          |      |       |       |                    |        |            |          |   |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|------|-------|-------|--------------------|--------|------------|----------|---|
| Rating Factor                                                                                           | Assigned Value   Multi-                                        |          |      |       | Score | Description Ref. # |        |            |          |   |
| 1 Containment                                                                                           | 0                                                              |          |      | 3     |       |                    |        | <b>x1</b>  |          |   |
| 2 Waste Characteristics                                                                                 |                                                                |          |      |       |       |                    |        |            | <u> </u> |   |
| Direct Evidence                                                                                         | 0                                                              |          |      | 3     |       |                    |        | x 1        |          |   |
| Ignitability                                                                                            | 0                                                              | 1        | 2    | 3     |       |                    |        | x 1        |          |   |
| Reactivity                                                                                              | 0                                                              | 1        | 2    | 3     |       |                    |        | <b>x</b> 1 |          |   |
| Incompatability                                                                                         | 0                                                              | 1        | 2    | 3     |       |                    |        | <b>x</b> 1 |          |   |
| Haz. Waste Quantity                                                                                     | 0                                                              | 1 2      | 3    | 4     | 5 (   | 5 7                | 8      | <b>x</b> 1 |          |   |
| J                                                                                                       | Total                                                          | Wa       | aste | CI    | hara  | acte               | ristic | ⇒ Score    |          |   |
| 3 Targets                                                                                               |                                                                | -        |      |       |       |                    | •      |            | <u> </u> | 7 |
| Dist. to Nearest Pop.                                                                                   |                                                                | 0        | 1    | 2     | 3     | 4                  | 5      | <b>x</b> 1 |          |   |
| Dist. to Nearest Bldg.                                                                                  | (                                                              | 0        | 1    | 2     | 3     |                    |        | <b>x</b> 1 |          |   |
| Dist. to Sensitive Env                                                                                  | ·. (                                                           | <b>)</b> | 1    | 2     | 3     |                    |        | x 1        |          |   |
| Land Use                                                                                                | (                                                              | )        | 1    | 2     | 3     |                    |        | x 1        | <b></b>  |   |
| Pop. Within 2 miles                                                                                     | (                                                              | )        | 1    | 2     | 3     | 4                  | 5      | <b>x</b> 1 |          |   |
| Bldgs. Within 2 miles                                                                                   | C                                                              | )        | 1    | 2     | 3     | 4                  | 5      | x 1        |          |   |
|                                                                                                         | Г                                                              | ota      | l Ta | arg e | ots   | S∞                 | re     | -          |          |   |
| 4 Multiply 1 x 2 x 3                                                                                    |                                                                |          |      |       |       |                    |        |            |          |   |
| Divide line 4 by 1,440                                                                                  | Divide line 4 by 1,440 and multiply by 100 $S_{\text{FE}} = O$ |          |      |       |       |                    |        |            |          |   |

ACCORDING TO SEFETY MONITORING EQUIPMONT AND & LOCAL FIRE OFFICAL; THE SITE POSES NO FIRE OR EXPLOSION THREAT,

## FIRE AND EXPLOSION

|                         |        |                |      |      |      |        |                 |            | TED HRS SCORE  ormation from the LSL) |  |  |
|-------------------------|--------|----------------|------|------|------|--------|-----------------|------------|---------------------------------------|--|--|
| Rating Factor           | As     | sign<br>Sircle | ed V | alue |      |        | Multi-<br>plier | Score      | Description Ref. #                    |  |  |
| 1 Containment           | 0      |                | 3    | 3    |      |        | x1              |            |                                       |  |  |
| 2 Waste Characteristics | ·      |                |      |      |      |        |                 |            |                                       |  |  |
| Direct Evidence         | 0      |                | 3    | }    |      |        | x 1             |            |                                       |  |  |
| Ignitability            | 0 1    | 2              | 2 3  | }    |      |        | x1              |            |                                       |  |  |
| Reactivity              | 0 1    | 2              | 3    | 1    |      |        | x 1             |            |                                       |  |  |
| Incompatability         | 0 1    | 2              | · 3  | 3    |      |        | x 1             |            |                                       |  |  |
| Haz. Waste Quantity     | 0 1    | 2 3            | 4    | 5 (  | 5 7  | 8      | · x1            |            |                                       |  |  |
| · T                     | otal \ | Nast           | e C  | hara | acte | ristic | s Score         |            |                                       |  |  |
| 3 Targets               |        |                |      |      | •    |        |                 |            |                                       |  |  |
| Dist. to Nearest Pop.   | 0      | 1              | 2    | 3    | 4    | 5      | x 1             |            | ·                                     |  |  |
| Dist. to Nearest Bldg.  | 0      | 1              | 2    | 3    |      |        | x 1             |            |                                       |  |  |
| Dist. to Sensitive Env. | 0      | 1              | 2    | 3    |      |        | x 1             |            |                                       |  |  |
| Land Use                | 0      | 1              | 2    | 3    |      |        | x 1             |            |                                       |  |  |
| Pop. Within 2 miles     | 0      | 1              | 2    | 3    | 4    | 5      | <b>x</b> 1      |            |                                       |  |  |
| Bldgs. Within 2 miles   | 0      | 1              | 2    | 3    | 4    | 5      | x 1             |            |                                       |  |  |
| Total Targets Score     |        |                |      |      |      |        |                 |            |                                       |  |  |
| Multiply 1 x 2 x 3      |        |                |      |      |      |        |                 |            |                                       |  |  |
| Divide line 4 by 1,440  | and    | mult           | ipły | by   | 100  |        | S               | E <b>*</b> | ·                                     |  |  |

ACCORDING TO SAFETY MONITORNIG EQUIPMENT AUG A
LOCAL FIRE OFFICAL! THE SITE POSES NO FIRE OR
EXPLOSION THREAT.

# DIRECT CONTACT

| SCREE                     | SCREENING SITE INSPECTION (SSI) PRELIMINARY HRS SCORE (This score is based on information from the SSI.) |                 |       |             |        |  |  |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------|-----------------|-------|-------------|--------|--|--|--|--|--|
| Rating Factor             | Assigned Value<br>(Circle One)                                                                           | Multi-<br>plier | Score | Description | Ref. # |  |  |  |  |  |
| 1 Observed Incident       | 0 45                                                                                                     | x1              | 0     |             |        |  |  |  |  |  |
| If line 1 is 45, proce    | eed to line 4                                                                                            |                 |       |             |        |  |  |  |  |  |
| 2 Accessibility           | 1 2 3                                                                                                    | x1              | 3     | No Fauce    | 1.     |  |  |  |  |  |
| 3 Containment             | <b>6</b> 15                                                                                              | x 1             | 0     | Cury Con    | 1      |  |  |  |  |  |
| 4 Waste Characteristi     | ics                                                                                                      |                 |       |             |        |  |  |  |  |  |
| Toxicity                  | 0 1 2 3                                                                                                  | x 5             | 15    | LAS DATA    | 1      |  |  |  |  |  |
| 5 Targets                 |                                                                                                          |                 |       |             |        |  |  |  |  |  |
| Pop. Within 1 mile        | 0 1 2 3 4 (5)                                                                                            | > x4            | 20    | 00/41 م     |        |  |  |  |  |  |
| Dist. to Crit. Habi       | itat 0 1 2 3                                                                                             | ×4              | 0     |             |        |  |  |  |  |  |
|                           | Total Targets Score                                                                                      | ,               | 20    |             |        |  |  |  |  |  |
| 6 If line 1 is 45, multip | tiply 1 x 4 x 5<br>bly 2 x 3 x 4 x 5                                                                     |                 | 0     |             |        |  |  |  |  |  |
| Divide line (d by 2       | 1,600 and multiply by 100                                                                                | S <sub>C</sub>  | x= 0  |             |        |  |  |  |  |  |

# DIRECT CONTACT

|                                                  | LISTING SITE INSPECTION (LSI) PROJECTED HRS SCORE (This score is based on the expected acquisition of information from the LSI.) |                      |                 |       |             |        |  |  |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-------|-------------|--------|--|--|--|--|--|
| Rating Factor                                    | Assig                                                                                                                            | ned Value<br>de One) | Multi-<br>plier | Score | Description | Ref. # |  |  |  |  |  |
| 1 Observed Incident                              | 0                                                                                                                                | 45                   | x1              | 0     |             | _      |  |  |  |  |  |
| If line 1 is 45, proce<br>If line 1 is 0, proce  | eed to line                                                                                                                      | 2                    |                 |       |             |        |  |  |  |  |  |
| 2 Accessibility                                  | 0 1                                                                                                                              | 2(3)                 | <b>x</b> 1      | 3     | No Faxe     | 1.     |  |  |  |  |  |
| 3 Containment                                    | 0                                                                                                                                | 15                   | <b>x</b> 1      | 0     | CLAY CAP    | 1/15   |  |  |  |  |  |
| 4 Waste Characteristi                            | cs                                                                                                                               |                      |                 |       |             |        |  |  |  |  |  |
| Toxicity                                         | 0 1                                                                                                                              | 2 ③                  | x 5             | 15    | LAS DATE    |        |  |  |  |  |  |
| 5 Targets                                        | _                                                                                                                                |                      |                 |       |             |        |  |  |  |  |  |
| Pop. Within 1 mile                               | 0 1                                                                                                                              | 2 3 4 5              | x4              | 20    | N14,00      | 1.     |  |  |  |  |  |
| Dist. to Crit. Habi                              | tat (1)                                                                                                                          | 2 3                  | <b>x4</b>       | 0     |             |        |  |  |  |  |  |
| ·                                                | Tota                                                                                                                             | Targets Score        |                 | 20    |             |        |  |  |  |  |  |
| 6 E line 1 is 45, multi<br>N line 1 is 0, multip |                                                                                                                                  |                      | 0               |       |             |        |  |  |  |  |  |
| Divide line (d by 2                              | 1,600 and r                                                                                                                      | nuttiply by 100      | S <sub>C</sub>  | c= 0  |             |        |  |  |  |  |  |

## HRS 2 FACTOR VALUE SUMMARY SHEET

| Factor                   | Factor Value       | Observed <u>Human Exposure</u> (X) |
|--------------------------|--------------------|------------------------------------|
| Vaste Characteristics    | 17 (100)           |                                    |
| Air Pathway              | <u>78</u> (100)    |                                    |
| Groundvater Pathway      | [0] (100)          |                                    |
| Surface Vater Pathvay    |                    |                                    |
| On-site Pathvay          | 56 (100)           |                                    |
| TOTAL ERS 2 FACTOR VALUE | <u>  126 (500)</u> |                                    |

### WASTE CHARACTERISTICS

|    |            |                                                                  | Yes<br>(x) | Reference   | Factor<br>Value                   |
|----|------------|------------------------------------------------------------------|------------|-------------|-----------------------------------|
| 1. | <b>(a)</b> | Are CONTAINERS open, unsealed, or                                | 177        |             | 0 (5)                             |
|    | (b)        | non-intact? Is there evidence of contaminant                     |            |             | (3)                               |
|    |            | migration away from the containers?                              |            |             | (5)                               |
|    | (c)        | Is the source(s) unlined or does it                              |            |             | δ                                 |
|    |            | have unsound diking?                                             |            |             | (5)                               |
| 2. | (a)        | Does the LANDFILL have exposed                                   |            |             |                                   |
|    | •          | waste, or is the landfill uncovered                              | •          |             |                                   |
|    |            | or is the landfill covered with                                  |            |             |                                   |
|    |            | contaminated soil, non-intact cover                              |            |             | $\boldsymbol{\rho}$               |
|    |            | or cover less than 1 inch?                                       |            | <del></del> | (5)                               |
|    | (6)        | Is there evidence of contaminant migration away from the source? |            |             | D                                 |
|    | (~)        | Is there an absence of a liner, a                                |            | <del></del> | (3)                               |
|    | (0)        | run-on or runoff management system                               |            |             |                                   |
|    |            | or leachate collection and removal                               |            |             |                                   |
|    |            | system?                                                          | <u>X</u>   |             | 5 (5)                             |
| 3. | (a)        | Is the SURFACE IMPOUNDMENT wet                                   |            |             |                                   |
|    |            | and non-enclosed?                                                |            |             | 0 (5)                             |
| ٠  | (b)        | Is there evidence of contaminant                                 |            | •           |                                   |
|    |            | migration away from the source?                                  |            | <del></del> | <u>U</u> (5)                      |
|    | (c)        | Is there so liner or diking?                                     |            |             | (5)                               |
| 4. | (=)        | Is the PILE uncovered, or is the                                 |            |             | •                                 |
|    |            | pile covered with contaminated soil,                             | •          |             |                                   |
|    |            | non-intact cower or cover less than                              |            |             | 0                                 |
|    |            | 1 inch?                                                          |            |             | (5)                               |
|    | (P)        | Is there an absence of a function-                               |            |             |                                   |
|    | •          | ing run-on or runoff management                                  |            |             |                                   |
|    |            | system or leachate collection<br>system?                         |            |             | 0                                 |
|    | (c)        | Is there an absence of a liner?                                  |            |             | (5)                               |
|    | •••        |                                                                  |            |             | (3)                               |
| 5. |            | answer highest factor value                                      |            |             |                                   |
|    |            | the following questions:                                         |            |             |                                   |
|    | (a)        | Is constituent data available                                    | V          | <b>1</b> ·  | 10                                |
|    | 11.4       | for vaste?                                                       | X          |             | 10 (10)                           |
|    | (0)        | Is waste quantity as deposited information available?            |            |             | <i>(</i> )                        |
|    | (c)        | Is disposal volume known?                                        |            | <del></del> | $\frac{1}{D} \stackrel{(8)}{(4)}$ |
|    |            | Is disposal area known?                                          |            |             | 0 (2)                             |
|    | •          |                                                                  |            |             |                                   |

...Continued

MASTE CHARACTERISTICS (Continued)

6. Complete the table for all sources at the site. Calculate Waste Quantity score and record summation to a maximum value of 30.

| Conteminated Soil        |                                                  | • | 1,125,000 | F |                         |
|--------------------------|--------------------------------------------------|---|-----------|---|-------------------------|
| [[]]bael                 | 0626E1                                           | ٠ | 399,28    | - | ٤0'2                    |
| JnestaelT bnal           |                                                  | 1 | 000,TS    | 1 |                         |
| Surface Impoundment      | <del>                                     </del> | • | SCE       | - |                         |
| Drums/Non-drum Conteiner |                                                  | ٠ | ses .     | - | <del></del>             |
| •liq                     | ,                                                | • | 50        | - |                         |
| Source                   | Surface<br>Area (ft2)                            | • | Divisor   | - | Weste Quentity<br>Score |

(xon0E) 0.5 0.5 Le303

Fotal Meste Cheracteristics [100]

#### AIR PATEWAY

Factor Reference **Value** 1. Only assign factor value for (a) or (b). (x) choosing the higher value: . (a) Is there a residence or regularly occupied building between 0 to 1/8 mile from a potential source(s)? (b) Is there a residence or regularly occupied building between 1/8 to 2 miles from a potential source(s)? 2. Complete (a) and (b) and assign the higher fector value: (a) If documented contamination of air, answer yes and assign factor value of 75. (b) Calculate potential population and assign factor value as given below:

| Distance (mile) | Population | × | Distance<br>Weighting Factor | - | Subtotal |
|-----------------|------------|---|------------------------------|---|----------|
| Onsite          | 0          | × | 1.642                        | • | 0        |
| 0-1/4           | 225        | × | 0.323                        | • | 73       |
| 1/4-1/2         | 279        | × | 0.056                        | • | 16       |
| 1/2-1           | 2186       | × | 0.017                        | • | 37       |
| 1-2             | 7503       | × | 0.005                        | • | 33       |
| 2-3             | 15276      | × | 0.003                        | - | 46       |
| 3-4             | 38711      | × | 0.002                        | - | 77       |

Total <u>787</u> x 1 = <u>3</u> (75max)

#### GROUNDWATER PATEWAI

|    |                          |                                  |               | OROUMORNIER TRIBUNA                                         | •     |             |           | <b>-</b>      |
|----|--------------------------|----------------------------------|---------------|-------------------------------------------------------------|-------|-------------|-----------|---------------|
|    |                          |                                  |               |                                                             | Y+s   | Referen     | <u>c•</u> | Value         |
| 1. |                          | pth to the ac                    | quif          | er of concern                                               | X     |             | _         | 5 (5)         |
| 2. | is the<br>waste<br>compo | and the aqui                     | ifer<br>intly | lel between the<br>of concern<br>y of sands, gravels,       | · 🗸   | - 1         |           | <b>5</b> (5)  |
|    | (b) Within is the condu  | ctivity laye                     | the<br>of a   |                                                             |       |             |           | (-15)         |
|    |                          |                                  | •             |                                                             |       | <del></del> | -         | (-15)         |
| 3. | choosing                 | the <u>higher</u> v              | alue<br>ng w  | iter well(s) in the                                         |       |             |           |               |
|    | _                        | fer of concert<br>1/2 mile from  |               | a more shallow unit<br>source(s)?                           | :<br> |             |           | <u>O</u> (20) |
|    | aquii                    |                                  | o o c         | ater well(s) in the<br>a more shallow unit<br>he source(s)? |       |             |           | O (5)         |
| ۷. |                          |                                  |               | a karst unit?                                               |       |             | <u> </u>  | 0(10)         |
| 5. | Is the ac                | quifer of con-                   | ce cu         | e sole                                                      |       |             |           | <u>O</u> (5)  |
| ٤. | factor ve                | alue:                            |               | assign the <u>higher</u>                                    | rate  | r           |           |               |
|    | essiq<br>(b) Calcu       | yn a factor vo<br>ulate potentio | alue<br>al p  |                                                             |       |             | -<br>-    | <u>O</u> (50) |
| _  | Bour                     | דוטאל טאני                       | <u> </u>      | SURFACE W                                                   | בבע   | renz Fo     | Z I       | DEMKAIG       |
|    | Distance<br>(mile)       | Population                       | 2             | Distance<br>Weighting Factor                                | =     | Subtote1    |           |               |
|    | 0-1/4                    |                                  | *             | 0.25                                                        | -     |             |           |               |
|    | 1/4-1/2                  |                                  | X             | 0.16                                                        | -     |             |           |               |
|    | 1/2-1                    |                                  | ×             | 0.08                                                        | -     |             |           |               |
|    | 2-3                      |                                  | ×             | 0.05                                                        | =     |             |           |               |
|    | 3-4                      |                                  | ×             | 0.02                                                        | _     |             |           |               |

ż

1 😓 evalues and environment

x 1 = (50max)

Total

## SURFACE WATER PATHWAY

|    |              |                                  |       |                                                            |       |      |         |         | Factor        |
|----|--------------|----------------------------------|-------|------------------------------------------------------------|-------|------|---------|---------|---------------|
|    |              |                                  |       |                                                            | -     | (x)  | Ref     | erence  | Velue         |
| 1. | Coes site    | lie within a<br>n7               | 100   | -year or less                                              | -     | X    | ج خ     | <u></u> | <u>5</u> (5)  |
| 7. |              |                                  |       | ributable to the                                           |       |      |         |         | $\sim$        |
|    | site at a    | drinking wate                    | er is | ntake?                                                     | -     |      |         |         | (20)          |
| 3. | . Is this a  | sole-source                      | surf  | ace water supply?                                          | -     |      |         |         | 0 (10)        |
| ∢. | . Is a fish  | ery (production                  | on) ( | contaminated as a re                                       | esult | ŧ.   |         |         |               |
|    | of the sit   | te, or is a f                    | lshe: | ry potentially impac                                       | cted  |      |         |         |               |
|    | within 15    | miles as a te                    | esul  | t of the site?                                             |       |      |         |         | <u>O</u> (5)  |
| ≤. | . Is a recre | eation area c                    | onta: | minated as a result                                        | of    |      |         | •       |               |
|    | the site.    | or is a recr                     | eati  | on area potentially                                        |       |      |         | •       |               |
|    | impacted (   | within 15 mil                    | . 4   | a result of the s                                          | it•7_ | X_   | _       |         | 5 (5)         |
| €. | result of    | the site, or                     | is    | v<br>contaminated as a<br>magnitive environments as a resu |       |      |         |         |               |
|    | of the si    | te?                              | ,25   |                                                            | -     | X.   | <u></u> | 1 =     | 5 (5)         |
| 7. | Complete (   |                                  | bna   | sssign the bigher                                          |       |      |         |         | •             |
|    |              |                                  |       | contamination of a                                         |       |      |         |         |               |
|    |              | •                                |       | th TCL/TAL compound                                        | ds    |      |         |         | • .           |
|    | withi        | n 15 miles as                    | 4 E   | sult of the site,                                          |       |      |         |         | _             |
|    | ensve        | r yes and ass:                   | ign ( | factor value of 50                                         | ٥     |      |         |         | <u>O</u> (50) |
|    | • •          | late potentia:<br>r value as giv |       | pulation and assign<br>below:                              | •     |      |         |         |               |
|    | _            |                                  |       |                                                            | •     |      |         |         |               |
| 1  | No           | NTAKES                           |       |                                                            |       |      |         | i       |               |
|    | Intake       | Population                       | ×     | * Dilution<br>Weighting Factor                             | -     | Subt | otal    |         |               |
|    | <b>0</b> 1   |                                  | z.    |                                                            | -     |      |         |         |               |
|    | <b>4</b> 2   |                                  | ×     |                                                            | •     |      |         |         |               |
| 1  |              | i i                              | _     |                                                            | 1     |      |         |         |               |

\* Use table on following page.

| Total_ | 0 | x_1 = | (50max) |
|--------|---|-------|---------|
|        |   | 100   |         |

## SURFACE WATER PATEWAY

# TABLE DILUTION WEIGHTING FACTORS

|                                     | Average Annual                 |                                       |
|-------------------------------------|--------------------------------|---------------------------------------|
| Surface                             | Flow in Cubic .                | Assigned                              |
| Characteristic                      | Feet per Second (CFS)          | Value                                 |
| Minimum perennial stream            | Less than 5 cfs                | 2.5                                   |
| Small to moderate stream            | 5 to 50 cfs                    | 0.25                                  |
| Moderate to large stream            | Greater than 50 to 500 cfs     | 0.025                                 |
| Large streams to rivers             | Greater than 500 to 10,000 cfs | 0.0013                                |
| Major rivers                        | Greater than 10,000 cfs        | 0.0003                                |
| Ocean or the Great Lakes            | Not applicable                 | 0.0003                                |
| Mixing sone of quiet flowing rivers | Greater than 50 cfs            | 0.125                                 |
| Lakes, reservoirs                   | Add and average CFS of         | Assign value                          |
|                                     | tributaries flowing into       | to calculated                         |
|                                     | lake/reservoir.                | CFS figure<br>using above<br>factors. |

with the word was been amount

recycled paper

## ON-SITE PATENAL

|    |                                                                                                                                                                            | ·                                     | Factor                         |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|---|
|    |                                                                                                                                                                            | Yes Reference                         | Value                          |   |
| 1. | Is the site located in an area where people live or go to school within I mile of the source(s)? *If answer NO to Question 1, do not proceed with the remaining questions. | X _ 1 =                               | 10(10)                         |   |
| 2. | Is there known contamination from the                                                                                                                                      |                                       |                                |   |
|    | site on residential or school property?                                                                                                                                    |                                       | <u>Q</u> (15)                  | • |
| 3. | Is site public use land or widely used land without barriers?                                                                                                              | · · · · · · · · · · · · · · · · · · · | <u>O</u> (10)                  |   |
| 4. | Complete (a), (b) and (c), and assign the                                                                                                                                  |                                       |                                |   |
|    | highest factor value: Which of the following are adjacent to site/sour or contaminated from the site?                                                                      | :co(s)                                |                                |   |
|    | (a) Schools, day-care (b) Parks, playgrounds, residences                                                                                                                   |                                       | <u>O</u> (15)<br><u>O</u> (10) |   |
|    | (c) National park, federal endangered<br>species, other public-use lands.                                                                                                  |                                       | <u>O</u> (5)                   |   |

5. Calculate population within 1 mile of the site, and assign factor value as given below:

| Distance (mile) | Population | × | Distance<br>Weighting Pactor |            | Subtotal |
|-----------------|------------|---|------------------------------|------------|----------|
| 0-1/4           | 225        | × | 0.05                         | -          | 11.25    |
| 1/4-1/2         | 279        | * | 0.025                        | •          | 6.98     |
| 1/2-1           | 2186       | × | 0.0125                       | <b> </b> - | 27.33    |

Total 46 (50max)

TOTAL OB-SITE PATEMAN VALUE 56 (100)

enders and environment

recycled paper

## REFERENCE DOCUMENTATION SHEET

| Ref.# | DESCRIPTION OF REFERENCE                          |
|-------|---------------------------------------------------|
| 1     | E&E, SEPTEMBER 14, 1988, DRAFT STREENING          |
|       | SITE INSPECTION ROPORT FOR NAIMAN CONTINS         |
|       | CARAVAN COMPANY, CHICAGO, ILLINOIS.               |
| -     |                                                   |
|       | _                                                 |
| 2     | CLIMATIC ATLAS OF THE UNITED STATES, U.S.         |
|       | DEPARTMENT OF COMMERCE NATIONAL CLIMATIC          |
|       | CONTOR, ASHVILLE, N.C., 1979                      |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       | <del>-</del>                                      |
|       | , <del>, , , , , , , , , , , , , , , , , , </del> |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
|       |                                                   |
| ,     |                                                   |